
LLNL-JRNL-402504

A Cartesian Embedded Boundary Method
for the Compressible Navier-Stokes
Equations

M. Kupiainen, B. Sjogreen

March 26, 2008

Journal of Scientific Computing

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

A Cartesian Embedded Boundary Method for the

Compressible Navier-Stokes Equations

Marco Kupiainen∗

Björn Sjögreen†

March 21, 2008

Abstract

We here generalize the embedded boundary method that was developed for
boundary discretizations of the wave equation in second order formulation in [6]
and for the Euler equations of compressible fluid flow in [11], to the compressible
Navier-Stokes equations. We describe the method and we implement it on a parallel
computer. The implementation is tested for accuracy and correctness. The ability
of the embedded boundary technique to resolve boundary layers is investigated by
computing skin-friction profiles along the surfaces of the embedded objects. The
accuracy is assessed by comparing the computed skin-friction profiles with those
obtained by a body fitted discretization.

1 Introduction

In fluid dynamics one is often interested in solving the Navier-Stokes equations in some
more or less complicated geometry. Generating a computational structured mesh is often
the most time consuming task in the solution procedure.

In this paper we present a new Cartesian grid finite difference method for the com-
pressible Navier-Stokes equations. The method uses embedded boundaries to handle
geometries. The embedded boundary discretization is an adaption of the method for
the wave equation in [6] to the compressible Navier-Stokes equations. The same method
was previously generalized to hyperbolic systems in [11], and an early version for viscous

∗Universitè Pierre et Marie Curie,4 Place Jussieu 75252 Paris Cedex 05(kupiainen@lmm.jussieu.fr)
†Center for Applied Scientific Computing, Lawrence Livermore National Lab, Livermore, CA 94551

(sjogreen2@llnl.gov). This work performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. UCRL-JNRL-
XXXXXX

1

equations was developed in [8]. The method is second order accurate at the embedded
boundary. Furthermore, we will present a simple strategy for for local grid refinement to
resolve fine flow features such as boundary layers and shocks.

The purpose of this paper is to demonstrate and highlight the embedded boundary
method for finite difference approximations of the compressible Navier-Stokes equations.

Most previous work on embedded boundary methods has focused on finite volume
schemes e.g. [10]. Examples are the BoxLib and Chombo frameworks, see [1], see also [3]
for a related finite volume method. We here use finite difference approximations to solve
the PDEs of fluid flows. Advantages of finite difference methods are a greater flexibility in
choice of stencils and boundary approximations. By taking advantage of this flexibility, it
has been possible to develop the new method such that it does not suffer from any small
cell CFL restriction caused by the very small grid cells that are cut out by the embedded
boundary.

We have not been able to prove that the new method is conservative at the embedded
boundary. However, conservation becomes less important when equations with physical
viscosity, such as the Navier-Stokes equations, are solved, and we have not experienced
any practical difficulties from this.

The outline of this paper is as follows. We present the equations and the difference
approximation on meshes with local refinements, but away from embedded boundaries, in
Section 2. In Section 3 we describe the boundary conditions at the embedded boundaries.
Numerical experiments in Section 4 show that the expected accuracy is achieved in the
implementation. Furthermore we compute supersonic viscous flow past a cylinder and we
investigate the accuracy of the computed skin-friction profile along the embedded surface.
We compare these results with results obtained with a high order approximation on a
body fitted grid.

2 Equations and Numerical Method

We consider the compressible Navier-Stokes equations for a perfect gas in two and three
space dimensions, which can be written in dimensionless units as (using Einstein’s sum-
mation convention):

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (1)

∂(ρui)

∂t
+

∂

∂xj

(

ρuiuj + pδij −
α(T)

Re

(

2Sij −
2

3
δijSkk

))

= 0, i = 1, 2, 3, (2)

∂e

∂t
+

∂

∂xj

(

(e+ p)uj −
α(T)γ

RePr(γ − 1)

∂

∂xj

(

p

ρ

)

− α(T)

Re

(

2Sij −
2

3
δijSkk

)

ui

)

= 0, (3)

where ρ is the density, ui, i = 1, 2, 3 are the velocities in x, y and z directions respectively,
p is the pressure, Re is the Reynolds number, and Pr is the Prandtl number. The viscous

2

shear stress tensor is given by

Sij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

,

and the total energy per unit volume is

e = ρ

(

p

γ − 1
+

uiui
2

)

. (4)

The temperature T is given by

T =
Mp

Rwρ
, (5)

where M is the molar mass of the fluid considered and Rw is the universal gas constant.
The function α(T) describes how the viscosity depends on the temperature and is either
taken constant (α(T) ≡ 1) or calculated using Sutherland’s law

α(T) =

(

T

T∞

)1.5
T∞ + 110

T + 110
,

where T∞ is a reference temperature. The speed of sound c, is related to the pressure and
density by

c2 = γ
p

ρ
,

where γ = Cp

Cv
is the ratio between specific heats and Cp − Cv = Rw

M
. Both γ and Rw

M
are

constants. Pr is a constant that relates thermal conductivity to viscosity. For a perfect
gas Pr = 0.72.

If the flow is planar, all derivatives with respect to x3 are set to zero and u3 ≡ 0.
For boundary conditions we distinguish between three types of boundaries; inflow,

outflow, and solid wall. At the inflow boundaries, we impose Dirichlet conditions on all
flow variables. At the outflow boundaries we impose homogeneous Neumann conditions on
the velocities and on the temperature, and at solid walls we impose the no-slip adiabatic
conditions

ui = 0, i = 1, 2, 3,

∂T

∂n
= 0.

(6)

For the numerical discretization, we will need to add one numerical boundary condition
at outflow boundaries and at solid-wall boundaries.

3

2.1 Numerical Approximation

The Navier-Stokes equations are discretized by a second order accurate total variation
diminishing (TVD) finite difference approximation for the convective terms. The viscous
terms are discretized by centered differences. The Navier-Stokes system is first approxi-
mated on semi-discrete form, and then advanced in time by a Runge-Kutta scheme. The
computational domain is the box

0 ≤ x ≤ Lx 0 ≤ y ≤ Ly 0 ≤ z ≤ Lz.

Geometrical objects in the domain are cut out from the box by the embedded boundary
method. This will be described in Section 3, and here we present the numerical method
in the absence of embedded boundaries.

We introduce a uniform Cartesian grid with N1 ×N2 ×N3 points with equal spacing
in all three directions,

xi = (i− 1)h, i = 1, 2, . . . , N1

yj = (j − 1)h, j = 1, 2, . . . , N2

zk = (k − 1)h, k = 1, 2, . . . , N3

where
h = Lx/(N1 − 1) = Ly/(N2 − 1) = Lz/(N3 − 1)

If necessary, the size of the box is adjusted slightly to make h of equal size in all three
directions.

The semi-discrete approximation of (1)–(3) in the interior, away from boundaries is

d

dt
ui,j,k(t) +Dx

+g
(x)
i−1/2,j,k +Dy

+g
(y)
i,j−1/2,k +Dz

+g
(z)
i,j,k−1/2 =

Dx
+(g

(x)
v)i−1/2,j,k +Dy

+(g
(y)
v)i,j−1/2,k +Dz

+(g
(z)
v)i,j,k−1/2, (7)

where u = (ρ ρu1 ρu2 ρu3 e) and where ui,j,k denotes the approximation of u(xi, yj, zk).

g
(x)
i−1/2,j,k is the numerical flux of the second order extension to the Godunov scheme

approximating the convective fluxes. g
(x)
i−1/2,j,k uses a Riemann solver with van Albada

slope limiter [14] applied to the primitive variables. The numerical flux differences are
five point schemes. The forward- and backward difference operators are defined as

Dx
+ui,j,k = (ui+1,j,k − ui,j,k)/h Dx

−ui,j,k = (ui,j,k − ui−1,j,k)/h

and similarly for the y- and z-directions. We also define the centered difference as

Dx
0ui,j,k = (ui+1,j,k − ui−1,j,k)/2h.

4

The viscous fluxes (gxv)i−1/2,j,k, (g
y
v)i,j−1/2,k, and (gzv)i,j,k−1/2 contain first derivatives.

For example the x-direction viscous fluxes are

(g(x)v)i−1/2,j,k =












0
4αi−1/2,j,k

3
Dx
−ui,j,k −

2αi−1/2,j,k

3
Dy
0
vi,j,k+vi−1,j,k

2
− 2αi−1/2,j,k

3
Dz
0
wi,j,k+wi−1,j,k

2

αi−1/2,j,k(D
y
0
ui,j,k+ui−1,j,k

2
+Dx

−vi,j,k)

αi−1/2,j,k(D
z
0
ui,j,k+ui−1,j,k

2
+Dx

−wi,j,k)
f5 + ki−1/2,j,kD

x
−Ti,j,k













. (8)

where

f5 =
ui,j,k + ui−1,j,k

2
(g

(x)
v,2)i−1/2,j,k +

vi,j,k + vi−1,j,k
2

(g
(x)
v,3)i−1/2,j,k+

wi,j,k + wi−1,j,k

2
(g

(x)
v,4)i−1/2,j,k. (9)

g
(x)
v is a vector with five components, g

(x)
v,m denotes its m:th component. We define

αi−1/2,j,k =
1

Re

α(Ti−1,j,k) + α(Ti,j,k)

2
,

and similarly for ki−1/2,j,k =
αi−1/2,j,kγ

Pr(γ−1)
. The discretization of the viscous fluxes means that

second derivatives are approximated by standard finite difference formulas, e.g.,

uxx(xi, yj, zk) = Dx
+D

x
−ui,j,k +O(h2) =

ui+1,j,k − 2ui,j,k + ui−1,j,k
h2

+O(h2) (10)

and

uxy(xi, yj, zk) = Dx
0D

y
0ui,j,k +O(h2) = Dx

+

Dy
0ui,j,k +Dy

0ui−1,j,k
2

+O(h2). (11)

2.2 Approximation near the Boundary

Three different conditions at the boundaries of the computational domain are consid-
ered, inflow boundary, outflow boundary, and wall boundary. We describe the boundary
procedure for the boundary at x = 0, (i = 1). The other sides are similar.

Boundary conditions are needed for u1,j,k, u2,j,k, since (7) is a five-point scheme. Here
ui,j,k denotes any flow variable. By including a boundary slope limiting procedure into

the interior scheme (7) whereby the slope s1,j,k, needed for the numerical flux, g
(x)
1+1/2,j,k is

extrapolated to first or second order

s1,j,k = s2,j,k, (12)

5

or
s1,j,k = 2s2,j,k − s3,j,k, j = 1, 2, . . . , N2, k = 1, 2, . . . , N3, (13)

the interior scheme effectively becomes a three point scheme at the boundary. Therefore,
we need only consider boundary values at the outermost point, i = 1.

At the outermost points (i = 1) the values are imposed by setting Dirichlet data at
inflow boundaries.

At outflow boundaries, we use homogeneous Neumann condition

u1,j,k =
4

3
u2,j,k −

1

3
u3,j,k, j = 1, . . . , N2, k = 1, . . . , N3.

The above Neumann condition is second order accurate and can introduce unphysical
values near the boundary. If the solution is smooth this will not cause any problems, but
if the solution has low regularity (described in Section 2.4) or is near vacuum conditions,
we replace the above condition with the more robust first order Neumann condition

u1,j,k = u2,j,k, j = 1, . . . , N2, k = 1, . . . , N3.

This reduction of accuracy is done routinely in TVD difference schemes, and only takes
place at a small nuber of grid points.

At solid walls we impose the adiabatic wall conditions (6). These give the velocities
(um)1,j,k = 0, m = 1, 2, 3. Second order accurate approximation of the temperature
normal derivative condition gives

T1,j,k =
4

3
T2,j,k −

1

3
T3,j,k.

As extra numerical boundary condition, we extrapolate the pressure,

p1,j,k = 2p2,j,k − p3,j,k. (14)

If (14) gives a negative pressure at i = 1, we replace the condition by the more robust
first order extrapolation

p1,j,k = p2,j,k.

The constitutive relations give the density and the energy at the wall from the temperature
and pressure.

2.3 Local grid refinement

We wish to accurately approximate the Navier-Stokes with as high Reynolds number as
possible. The computational can be very large, because it scales roughly as Re3. We
try to reduce this cost by introducing finer grids typically only where there are boundary
layers and turbulent wakes.

6

i i+1 i+2i−1i−2i−3

1 2 3 4 5 6 7

Figure 1: Schematic of grid/grid interpolation in one space dimension.

2.3.1 Grid to grid interpolation

A one dimensional example of how the grid refinements are set up is shown in Fig. 1. The
coarse grid with points xj, j = 1, 2, . . . , N is given (the lower grid in Fig. 1). Assume that
we have decided in some way, that refinement is needed from grid point xi and upward.
Assume that the discretization uses a five point computational stencil. We wish to apply
the stencil up to the grid point xi. We therefore let the points xi+1 and xi+2 be a part of
the discretization. These points will get values by interpolation (injection) from the fine
grid. Let the grid points of the fine grid be denoted yj. The fine grid, in Fig. 1 refined by
a factor 2, begins at y3 = (xi + xi+1)/2, the first point where refinement is needed, which
is not present in the coarse grid. The points y1 and y2 are ghost points, i.e., points that
are considered outside the computational domain, but are needed to be able to apply the
computational stencil at y3. The grid to grid interpolation procedure defines the function
values at y1 and y2 by interpolation from the coarser grid, and the function values at xi+1

and xi+2 by interpolation from the fine grid. In this one dimensional example, values at
all points except y1 can be defined by injection from the other grid. In two and three
space dimensions, there are more interpolated values because of the so called hanging
nodes that occur, see Fig. 2.

In three space dimensions, the grid to grid interpolation is done with tensor product
Lagrange interpolation. Lagrangian grid to grid interpolation is stable for many discretiza-
tions of hyperbolic conservation laws, see, e.g., [13, 2]. We define the rth degree three
dimensional interpolant πf of f with the lower left corner of the stencil at (xi0 , yj0 , zk0

),
as

πf(x, y, z) =
r
∑

m=0

r
∑

n=0

r
∑

o=0

f(xi0+m, yj0+n, zk0+o)Lm(x)Ln(y)Lo(z), (15)

where Lν(ξ), ν = m,n, o is the standard Lagrange polynomial basis,

Lm(x) =
r
∏

p=0
p6=m

x− xp+i0
xm+i0 − xp+i0

,

and similarly for Ln(y) and Lo(z). Fig. 1 indicates that for the one dimensional example,
the interpolation polynomial has r = 3 and has lower left corner at xi−3, i.e., i0 = i − 3.
Note that an r degree interpolant gives interpolated values that are of order of accuracy
r + 1.

7

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�

Figure 2: Schematic of grid/grid interpolation in two space dimensions. The larger (blue)
circles denote interpolation points. The smaller (red) circles denote the domain of depen-
dence of the fourth order accurate Lagrange interpolation stencil.

The interpolation stencils should be made such that the interpolation is explicit, mean-
ing that the interpolation stencil on the coarse grid (for computing values at y1 and y2 in
Fig. 1) should not contain points (xi+1 and xi+2 in Fig. 1) that have been injected from
the fine grid.

We choose r = 3 because we compute second derivatives when updating the fluxes for
the Navier-Stokes equations, and hence we need at least fourth order accurate interpola-
tion to preserve overall second order accuracy, see [2].

2.4 Switching interpolation order

In the presence of sharp gradients, shocks or when the solution is detected to have small
pointwise regularity, we use linear interpolation (r = 1) instead of higher order interpo-
lation to avoid unwanted oscillations. To detect the non-smoothness we use a so called
wavelet filter to approximate the Lipschitz exponent αi

|f(~x+ h~ei)− f(~x)| ∼ Chαi , i = 1, . . . , 3. (16)

Consider one space dimension and assume that we are given the function ui. The difference

di = ui − (ui+1 + ui−1)/2 (17)

is a measure of the smoothness of the function. If ui is smooth, the average at xi is close to
the actual value ui, making di small. In general any averaging difference operator can be
used in place of (ui+1 + ui−1)/2. If this procedure is repeated hierarchically, i.e., defining

d2i = ui − (ui+2 + ui−2)/2, d3i = ui − (ui+4 + ui−4)/2, . . .

8

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

��

���	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��

��
��
��

(a) α1 <
1

2

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���

!�!"�"

#�#$�$

%
%
%
%
%
%
%
%
%
%

&
&
&
&
&
&
&
&
&
&

'
'
'
'
'
'
'
'
'
'

(
(
(
(
(
(
(
(
(
(

)
)
)
)
)
)
)
)
)
)

*
*
*
*
*
*
*
*
*
*

+
+
+
+
+
+
+
+
+
+

,
,
,
,
,
,
,
,
,
,

-
-
-
-
-
-
-
-
-
-

.
.
.
.
.
.
.
.
.
.

/
/
/
/
/
/
/
/
/
/

0�0�0�0�0�0�0�0�0�0�0�0�01�1�1�1�1�1�1�1�1�1�1�1

2�2�2�2�2�2�2�2�2�2�2�2�23�3�3�3�3�3�3�3�3�3�3�3
4�4�4�4�4�4�4�4�4�4�4�4�45�5�5�5�5�5�5�5�5�5�5�5
6�6�6�6�6�6�6�6�6�6�6�6�67�7�7�7�7�7�7�7�7�7�7�7

(b) α2 <
1

2

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

@�@A�A

B�BC�C

D�DE�E

F
F
F
F
F
F
F
F
F
F

G
G
G
G
G
G
G
G
G
G

H
H
H
H
H
H
H
H
H
H

I
I
I
I
I
I
I
I
I
I

J
J
J
J
J
J
J
J
J
J

K
K
K
K
K
K
K
K
K
K

L
L
L
L
L
L
L
L
L
L

M
M
M
M
M
M
M
M
M
M

N�N�N�N�N�N�N�N�N�N�N�NO�O�O�O�O�O�O�O�O�O�O�O

P�P�P�P�P�P�P�P�P�P�P�PQ�Q�Q�Q�Q�Q�Q�Q�Q�Q�Q�Q
R�R�R�R�R�R�R�R�R�R�R�RS�S�S�S�S�S�S�S�S�S�S�S
T�T�T�T�T�T�T�T�T�T�T�TU�U�U�U�U�U�U�U�U�U�U�U

(c) α1 <
1

2
and α2 <

1

2

Figure 3: Schematic of grid/grid interpolation in two space dimensions. The larger (blue)
circles denote the points to where the interpolation points are used. The smaller (red)
circles denote the domain of dependence of the interpolation stencil.

the functions di, d
2
i , d

3
i , ... can be interpreted as wavelet coefficients. Different average

operators in (17) correspond to different wavelet bases. It can be shown that the local
regularity of ui, measured as the Liptschitz exponent, α, can be estimated from the
decrease of dmi with m.
The procedure of approximating αi is described in detail in [12], where it is used to add
artificial dissipation when the solution is non-smooth i.e. has an αi < α0 (α0 ∈ [0.4, 0.6]
is reported to work well in [12]). We here use this procedure dimension by dimension to
switch to a lower order interpolation stencil in the i-direction when the Lipschitz exponent
is less than 0.5. In Fig. 3 we show how the interpolation stencil is modified if any of the
points in the domain of dependence has αi <

1
2

2.5 Time Discretization

The time integration is done with a second order accurate Runge-Kutta method. Given a
Courant number, the time step ∆t is taken as the minimum of the viscous and convective
part of the operator over all grids and then the solution is advanced forward in time,
with the same time step on each grid. The coarsest grid will use a smaller time step than
necessary for stability, but we avoid interpolating the inner-grid boundary conditions
between different times, see, e.g., [13]. Furthermore, the cost of advancing the solution
of the coarser grids is usually only a small fraction of the cost of advancing on the finer
grids.

9

3 Embedded Boundary

Embedded objects cut holes in the Cartesian grid. When the computational stencil is
applied at all points outside the embedded objects, a few points inside the objects will
be needed. These are the so called ghost points. Boundary conditions at the object
boundaries define the values of the solution at the ghost points. We define the interior
grid points as the points where the difference approximation is applied. The covered
points are the points covered by the embedded object which are not ghost points. The
covered points are not used in the computation.

We will here describe two boundary procedures, the method by Kreiss and Petersson
from [5, 7], which we from now on will call the KP embedded boundary method, and the
embedded boundary method from [11] which we will call the SP (Sjögreen/Petersson) em-
bedded boundary method. The KP embedded boundary method is a very accurate bound-
ary procedure, developed for wave propagation problems. The SP embedded boundary
method is a robust, but less accurate, boundary procedure for problems with discontinu-
ous solution. These methods are used to impose the Dirichlet condition

u|B = gD (18)

or the Neumann condition
∂u

∂n

∣

∣

∣

∣

N

= gN (19)

at the embedded boundary. Here gD and gN are given data.
The boundary conditions (6) consists of only Neumann and Dirichlet conditions, plus

the extrapolation condition (14). In [5, 7, 11], the KP method is defined for Neumann
and Dirichlet boundary conditions, and the SP method is defined for Dirichlet and ex-
trapolation boundary conditions. To be able to apply both methods to the Navier-Stokes
equations, we therefore need to introduce an extrapolation condition for the KP method
and a Neumann condition for the SP method.

3.1 The KP embedded boundary method

In Fig. 4 we outline the embedded boundary procedure from [5]. A normal to the boundary
through the ghost point is defined, and function values in the interior of the domain on
the normal, (uI , uII in Fig. 4) are obtained by quadratic interpolation in the i-direction.
If the normal has slope less than one, the interpolation is instead done in the j-direction.
Finally the condition (18) or (19) is approximated by a formula involving the the three
values uI , uII , and the ghost point value ui,j . From this formula we obtain from (18)

ui,j = c1uI + c2uII + c3gD =
∑

cDk,lui+k,j+l + c3gD (20)

where the coefficients depend on the distances ∆ and ξΓ defined in Fig. 4. The sum
extends over the points in the interpolation stencil. For precise formulas for c1, c2, and

10

ξ
Γ

(α,β)n=

u I

u II

(i,j)

(i+1,j+2)

(i+1,j+1)

∆

(i,j+3)

(i+1,j+3)(i,j+2)

(i,j+1)

Figure 4: KP embedded boundary method. The indices denote the domain of dependence
for the embedded boundary procedure for ghost point (i, j).

c3,, see [5]. Similarly (19) gives an update formula

ui,j = c′1uI + c′2uII + c′3gN =
∑

cNk,lui+k,j+l + c′3gN (21)

where the coefficients are given in [7].
We impose the numerical condition (14) at the embedded boundary by second order

extrapolation along the normal,
pi,j = 2pI − pII , (22)

where we decrease the order of extrapolation by one to

pi,j = pI ,

if (22) gives negative pressure.

3.2 The SP embedded boundary method

When discontinuities are present in the solution, special care has to be taken to make the
boundary interpolation robust. We outline the SP method, which is suited for dealing
with shock waves, in Fig. 5, where we impose the Dirichlet boundary condition (18). The
SP method uses more values along the normal than the KP method, but the horizontal
interpolation is linear, i.e.,

uI = η1ui,j+1 + (1− η1)ui+1,j+1, (23)

11

uII = η2ui,j+2 + (1− η2)ui+1,j+2, (24)

uIII = η3ui,j+3 + (1− η3)ui+1,j+3, (25)

where ηi ∈ [0, 1], i = 1, 2, 3, depend on the location where the normal intersects the
horizontal grid lines. When the normal has positive y-component and the angle between
the normal and the x-axis is between π

4
and π

2
, the normal will always intersect the grid line

y = yj+1 between xi and xi+1. There are two different cases when the normal intersects
the y = yj+2 grid line (between xi and xi+1 or between xi+1 and xi+2) and similarly three
different cases where the normal intersects the y = yj+3 grid line. Similarly to the KP
method, the interpolation (23)–(25) are done in j-direction if the normal has slope less
than one. Denote the distance between the boundary and the ghost point by ξΓ and let
the distance between the ghost point and grid line y = yj+1 along the normal be ∆ (see
Fig 5). Define new points ub1 and ub2 placed equidistantly along the normal by linear
interpolation along the normal at distances ξΓ + ∆ and ξΓ + 2∆ from the ghost point
respectively,

ub1 =
ξΓ
∆
uII +

(

1− ξΓ
∆

)

uI , ub2 =
ξΓ
∆
uIII +

(

1− ξΓ
∆

)

uII .

A limited boundary slope is defined,

sD := Sminmod (ub1 − gD, ub2 − ub1) ,

where

Sminmod(x, y) =







x, if |x| < |y| and xy > 0,
y, if |y| < |x| and xy > 0,
0, otherwise

(26)

is the well-known min-mod limiter. The boundary condition (18) is approximated by
extrapolation using the limited boundary slope,

ui,j = gD −
ξΓ
∆
sD. (27)

The above construction is always well-defined, since h ≤ ∆ ≤
√
2h.

In the SP method, we use

pi,j = pI − Sminmod (pIII − pII , pII − pI) . (28)

to define the pressure at the ghost points. (28) is similar to (14) except for the limiter
which improves robustness. If the solution is smooth,

Sminmod (pIII − pII , pII − pI) ≈ pII − pI

and we recover (14).
We use the second order accurate

Ti,j =

(

4

3
− ξ

3∆

)

Tb1 −
(

1

3
− ξ

3∆

)

Tb2 −
2∆(2ξ + 1)

3
gN (29)

to impose the homogeneous Neumann condition for the temperature (gN = 0).

12

ub1

ξ
Γ

ξ
Γ

ξ
Γ

ub2

u II

u I

u III

u IV

(i,j)

(i,j+1)

(i,j+2)

(i+1,j+3)

(i+1,j+2)

(i+1,j+1)

(i,j+3)

n=

∆

(i+2,j+4)
(i+1,j+4)

(α,β)

Figure 5: SP embedded boundary method. The indices denote the domain of dependence
for the embedded boundary procedure for ghost point (i, j).

13

X

X

X

XX

A

B C D

Figure 6: The ghost point A and C are needed when computing ∂2/∂x2 and ∂2/∂y2

respectively and are updated as described previously. B and D are needed when computing
∂2/∂x∂y. The value of D is assigned with the standard algorithm, but since the value of
B depends on the value of A or C we make a second update after A and C are found, to
update all the ghost points. In practice A and C do not couple back to B. B is a coupled
point.

3.3 Navier-Stokes boundary condition

We summarize the KP and SP methods at the embedded boundary as follows. KP method
consists of using (20) for the zero velocity boundary condition, using (21) for the zero heat
flux boundary condition, and using (14) for the pressure extrapolation. The SP method
consists of using (27) for the zero velocity condition, using (29) for the zero heat flux
boundary condition, and using (28) for the pressure extrapolation.

3.4 Three space dimensions

The interpolation for updating the ghost points is done analogously in three space di-
mensions, with the exception that the normal intersects planes instead of lines. The
interpolation formulas for the ghost points, (27), (28), and the first equalities of (20) and
(21) are still valid in three dimensions, but the formulas for computing the intermediate
values, uI , uII , uIII , now involve interpolation in planes.

3.5 Coupled ghost points

One difficulty with the KP and SP methods is that the ghost points sometimes couple,
i.e., if the update formula for one ghost point depends on the value at another ghost

14

point. For the wave equation, it was observed in [7] that when the embedded boundary
is smooth and resolved, ghost point values only depend on values inside the domain, and
thus do not couple. However, for the Navier-Stokes equations the stencil is larger due
to mixed derivatives, e.g., uxy. The mixed derivatives increase the likelihood of coupled
ghost points. An example of this is shown in Fig. 6, where the point B is coupled because
its update formula according to (20), (21) or (27) depends on point A. However, since A
does not depend on any ghost point, it is easy to decouple by first evaluating A and then
B.

The embedded boundary procedure and ghost points form a dependency graph with
a coupling matrix with a non-zero element if a ghost point depends on another ghost
point. We wish to make this matrix lower triangular, if possible. This is achieved with
the topological sort algorithm [4], which will terminate if there is a loop in the dependency
graph, i.e. it is not possible to make the coupling matrix lower triangular. In this case one
would have to solve a linear system of equations for the ghost point values, but in practice,
when the embedded boundaries are resolved, the topological sort is successful. Problems
are likely to occur when geometries have cusps, sharp inside corners or are unresolved
with two boundaries close to each other.

4 Numerical Experiments

In this section we verify the formal order of accuracy of the implementation of the embed-
ded boundary method for the viscous operator and we study the convergence properties
of the embedded boundary conditions for a supersonic external flow problem.

4.1 Accuracy

We here verify the second order of accuracy of the approximation of the viscous operator.
The nonlinear MUSCL method, which is used for the inviscid fluxes, will switch its order
of accuracy between one and two depending on the solution. We therefore solve the PDE
with only the viscous terms,

∂w

∂t
= V iscOp(w) + f, (30)

where w = (ρ, ρu1, ρu2, ρu3, e), and the viscous operator is,

V iscOp(w) = div







0
α(T)
Re

(

2Sij − 2
3
δijSkk

)

α(T)γ
RePr

(γ − 1) ∂
∂xj

(

p
ρ

)

+ α(T)
Re

(

2Sij − 2
3
δijSkk

)

ui






.

15

f = f(x, y, z, t) is a known forcing function that has been determined such that the
solution of (30) is

ρ = 1 +
sin(ω1y) cos(ω2x) sin(ω3z) sin(ω4t+

π
2
)

2

u1 = sin(ω5x) cos(ω6y) sin(ω7z) sin(ω8t+
π

2
)

u2 = cos(ω9x) cos(ω10y) cos(ω11t)

u3 = sin(ω12x) sin(ω13y) sin(ω14z) cos(ω15t)

T = x2 + 1 + sin(ω16xyzt+
π

2
),

(31)

where the total energy is obtained from the temperature by (4) and (5) with constants
Re = 1.0, P r = 0.72, γ = 1.4 and α = 1.0. The forcing f is calculated as

f =
∂w̃

∂t
− V iscOp(w̃)

where w̃ is the function given by (31). In this way we know that the exact solution of
(30) is w̃ and we can therefore measure the absolute error of the numerically computed
solution. The test geometry is a cylinder with radius 0.5 centered at the origin. The
boundary normal of a cylinder in two space dimensions ranges over all possible angles
of interpolation at the embedded boundary. The different ωi:s can be chosen arbitarily.
We have chosen ω4 = π

2
, ω8 = ω11 = ω16 = 0, and ωi = 2π for i 6= 4, 8, 11, 16. The

computational domain is [−2, 2]× [−2, 2] and Dirichlet boundary conditions are used on
all four sides of the domain. At the embedded boundary we use the Dirichlet condition
(20) for the velocities. We run the simulation until time 0.01, which corresponds to
(using Courant number 0.5) 191, 770, and 3096 time steps for the three discretizations
respectively. The results are compared component-wise at time 0.01 over all interior grid
points. We display the error of the energy component of w in Tables 1 and 2. Results for
the momentum and density components are similar, but not shown here. eN denotes the
approximation of the total energy when the grid has N 2 points, and e is the exact energy.
In Tables 1 and 2 we infer that the approximations are second order accurate, because
the error decreases with approximately a factor four when the mesh spacing is divided by
two. Fig. 7, which displays the pointwise error, clearly shows that the approximation
error is largest at the embedded boundary. This is due to the interpolation errors in
the embedded boundary conditions. In general, interpolation at a boundary is equivalent
to approximating by one-sided operators near the boundary, while the interior scheme
is centered and therefore have smaller truncation error. The truncation error oscillates
wildly between consecutive grid points along the embedded boundary, but because the
problem we solve is parabolic, the non-smooth part of the error decays exponentially away
from the embedded boundary.

16

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

x−velocity at time= 0.01 after 191 timesteps

0.005

0.01

0.015

0.02

(a) N = 100

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

x−velocity at time= 0.01 after 770 timesteps

0

1

2

3

4

5

6

x 10
−3

(b) N = 200

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

x−velocity at time= 0.01 after 3096 timesteps

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
−3

(c) N = 400

Figure 7: The pointwise error is largest when the boundary intersects the normal close to
an inner point. Note the different scales and the order of convergence. The error on the
embedded boundary is of the same order of magnitude as the error in the interior of the
domain.

17

N ‖e− eN‖L∞ Quotient

100 1.610611286568719e-02 -
200 4.227500992437072e-03 3.809842480108403e+00
200 4.227500992437072e-03 -
400 1.076486438807756e-03 3.927128888979937e+00

Table 1: The relative L∞ error in the total energy.

N ‖e− eN‖L2
Quotient

100 7.994539555804822e-03 -
200 1.983426735739193e-03 4.052418953180670e+00
200 1.983426735739193e-03 -
400 5.008640615789963e-04 4.017933288218640e+00

Table 2: The relative L2 error in the total energy.

4.2 Mach 3 flow around a cylinder

The challenge with computing approximate solutions to the Navier-Stokes equations using
embedded boundaries is the resolution of boundary layers. With body-fitted grids the grid
is usually stretched to have very small grid spacing in the direction normal to the wall.
This is done because in an attached boundary layer, the need for tangential resolution is
much lower than the required resolution in the direction normal to the wall. Typically the
ratio of wall normal vs. tangential grid size is one to ten for time accurate simulations,
but for steady state calculations it can be of the order of one to hundreds. However, at
a point where the boundary layer separates, high resolution in the tangential direction is
necessary. We will here investigate these claims by numerical experiments.

The purpose of this study is to evaluate the resolution of boundary layers, and how
well the embedded boundary method can predict quantities on the embedded boundary.
In particular we will study how the the skin-friction coefficient and temperature on the
surface of the cylinder converge as the grid is refined. This tests the Dirichlet boundary
condition for the velocity and the Neumann boundary condition for the temperature
respectively at the embedded boundary.

We here compute supersonic flow around a cylinder with radius 0.5 with Mach number
3 and Reynolds numbers 500 in the two dimensional domain (x, y) ∈ [−10, 10] × [−5, 5].
The center of the cylinder is located at (−1, 0). These simulations are time accurate,
and resolved in time and space. As initial data, we impose free stream conditions in
the entire domain. The discretization on the Cartesian grid is efficient because it has
a simpler memory access pattern than an unstructured method and requires less metric
information (and thereby less memory accesses and less arithmetic operations) than an
approximation on a curvilinear grid. In fact the grid is never used in the computation.

Figure 8 shows velocity magnitude
√

u21 + u22 contours. The computations was run

18

−5 0 5 10

−4

−3

−2

−1

0

1

2

3

4

5

X

Y

Velocity magnitude after 507300 timesteps

0.5

1

1.5

2

2.5

Figure 8: Two dimensional computations of Mach 3 flow past a cylinder. Velocity mag-
nitude contours.

until steady-state. In the computations the timestep had to be restricted by the stability
requirement of the viscous operator. We take this as an indication that the flow is resolved.

The solution displayed in Fig. 8 were computed over a base grid with 736×368 points
and with four refinement patches, with 373 × 373, 373 × 373, 563 × 563, and 771 × 771
grid points. The spacing of each refinement patch is a factor 2 finer than the previous.
The boundaries of the refinements are outlined in Fig. 8.

4.2.1 Comparison with body fitted computations

We will compare the results obtained by the embedded boundary method with results
obtained by solving the same problem using a body fitted grid. For the body fitted grid
computations below, we used the solver for the compressible MHD equations, developed
in [15], with magnetic fields set to zero.

The domain is discretized by the overset grid configuration displayed in Fig. 9 for the
cylindrical flow problem. There are four grids, a base grid that covers the entire domain,
a curved grid around the bow shock, a fine polar grid near the cylinder surface, and a fine
grid that covers the wake region. We used the overset grid generator Xcog [9] to generate
the grids and the interpolation information.

We discretized the Navier-Stokes equations by a sixth order accurate finite difference
scheme with summation-by-parts boundary modification of the difference operators on
all component grids except the bow shock grid, where we used a TVD type difference
scheme. The solution was time marched to steady state, first with a TVD scheme on all
grids, and later when the solution is fully developed, with the sixth order method on three
of the grids, as described above.

Interesting questions about overall accuracy and error propagation from the bow shock

19

−2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8
Four overset grids

Figure 9: Overset grid domains used for computations with body fitted grids.

are outside the scope of this work. However, it was observed in [15] that the actual grid
convergence rate at the body boundary is close to 2nd order.

Fig. 10 shows Mach number contours of a solution with Mach number 3 and Reynolds
number 500. The grid boundaries are outlined in color (or grey). The overall flow features
are very similar to the embedded boundary solution of the same problem, shown in Fig. 8.

4.2.2 Grid convergence of the skin friction coefficient

Viscous drag, or skin friction, is caused by the fact that we consider here a viscous gas
and a no-slip condition is imposed on the velocity. We investigate how accurate and/or
converged the normal derivative of the velocity is for different resolutions.

The skin friction coefficient in scaled units is

Cf =
α(T)

Re

1
1
2
ρ∞U2

∞

∂V

∂n
, (32)

where V denotes the tangential velocity on the boundary. In two space dimensions we
have V = ~u · ~t, with ~t the vector tangential to the boundary. ∂V/∂n at the boundary is
computed by (21), where the Neumann data, ∂V/∂n, is the unknown and the ghost point
value known. ρ∞ and U∞ are the density and velocity magnitude respectively in the free
stream state.

20

0 2 4 6 8 10

−6

−4

−2

0

2

4

6

Figure 10: Solution on overset grids with Mach number 3 and Reynolds number 500.
Mach number contours.

The results below display Cf as a function of the x-coordinate along the width of the
cylinder. The Cf curve rises from the forward stagnation point to a high value at the
front side of the cylinder. On the rear part of the cylinder, the friction decreases, and
some recirculation (negative Cf) is seen where the boundary layer separates to form the
wake.

Two different numerical boundary procedures at the embedded boundary are com-
pared, the KP method as described in Section 3.1 and the SP method as described in
Section 3.2. We also compare with results from the body fitted computation described in
Subsection 4.2.1.

In Figs. 11–13 we show the grid convergence of Cf for the KP, SP, and body fitted
methods. The embedded boundary methods use the second order boundary condition
(13) at the embedded boundary. Fig. 11 shows Cf computed by the KP method, on three
different sets of grids, each with four refinement grids. The refinement grid closest to the
cylinder has grid size h = 0.0068306, 0.003406, and 0.0017007 for the three different curves
respectively. Fig. 12 show the same computation, but using the SP method. Fig. 13 shows
the grid convergence of Cf for the body fitted computation, where the three grid sizes are
given in Table 3. The cylinder grid and wake grid have cell aspect ratios approximately
equal to one. The spacing in the radial direction on the cylinder, and the uniform spacing
in the wake, for the three different overlapping grids are equal to the spacing of the finest
refinement grid in the three different set of grids used in the embedded computations.
Thus, in Figs. 11–13 the embedded and body fitted computations are made with the
same h near the body. For the finest computation this h corresponds to approximately

21

−1.5 −1.4 −1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Second order KPGODU

h=0.0068306
h=0.003406
h=0.0017007

Figure 11: Cf along the upper half of the cylinder computed with the KP embedded
boundary method for Mach number 3 and Reynolds number 500.

−1.5 −1.4 −1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Second order SPGODU

h=0.0068306
h=0.003406
h=0.0017007

Figure 12: Cf along the upper half of the cylinder computed with the SP embedded
boundary method for Mach number 3 and Reynolds number 500.

22

−0.5 0 0.5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C
f

x

Coarse
Medium
Fine

Figure 13: Cf along the upper half of the cylinder computed with the body fitted method
for Mach number 3 and Reynolds number 500.

Coarse Medium Fine
base grid 100x136 200x272 200x272
wake grid 400x200 800x400 1200x600
shock grid 160x35 320x70 320x70
body grid 352x15 697x30 1387x60

Table 3: Number of grid points in composite grids for the three computations. The body
grid and the wake grid have cell aspect ratios close to one.

26 grid points over the width 1/
√
Re.

In Fig. 14 we have collected the Cf curves from the finest grids in Figs. 11–13. The
body fitted method and the KP embedded method give results that are indistinguishable
in the plot. We conclude that the KP embedded boundary approach gives more accurate
results than the SP embedded boundary method, and furthermore that the accuracy of
the KP embedded boundary method is comparable to the accuracy of the body fitted
method.

It is not unexpected that the KP method is more accurate than the SP method, because
the SP method switches between a first and second order accurate boundary condition,
whereas the KP method is always of high formal accuracy. The SP method uses limiters to
handle shock waves, but the KP method uses centered interpolation stencils. Nevertheless,
the KP method gave solutions that were free from unphysical oscillations, since a resolved
boundary layer does not contain discontinuities.

Fig. 15 gives another indication that the formal order of accuracy is very important.
Fig. 15 shows results from the same computation as in Fig. 14, but with the first order
boundary extrapolation (12) used at the embedded boundary instead of the second order

23

−1.5 −1.4 −1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
 Comparison of methods. Second order extrapolation

KPGODU
SPGODU
D06 BODY FITTED

Figure 14: Cf along the cylinder surface with the KP embedded boundary method, the
SP embedded boundary method, and the body fitted method. Mach number 3, Reynolds
number 500. The finest grid size is h = 0.0017007. Second order extrapolation (13).

24

−1.5 −1.4 −1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 Comparison of methods First order extrapolation

KPGODU
SPGODU
D06 BODY FITTED

Figure 15: Cf along the cylinder surface with the KP embedded boundary method, the
SP embedded boundary method, and the body fitted method. Mach number 3, Reynolds
number 500. The finest grid size is h = 0.0017007. First order extrapolation (12).

(13). The body fitted Cf curve is the same in both figures.
We conclude that when the physical viscosity is not resolved, which is the case for

simulations using the coarse mesh then the skin friction cannot be expected to be accurate
raising the need for local grid refinement.

4.2.3 Grid stretching with the body fitted method

The number of points on the cylinder ranges from 352 on the coarse grid to 1387 on the
fine grid. Because the boundary layer is attached, the grid size along the cylinder can be
coarser than the grid size normal to the body. We coarsen the composite grids Coarse and
Medium in the direction tangential to the cylinder, and obtain the grids Coarse-S and
Medium-S. These grids have cell aspect ratios approximately 1:10 along the cylinder, the
exact number of grid points are given in Table 4. We had to extend the cylinder grid in
the Coarse-S composite grid in the radial direction to make the interpolation between the
grids well defined, but the grid spacing of the Coarse-S grid is still half of the Medium-S
grid. Fig. 16 displays a comparison between Cf for flows computed on the stretched and
non-stretched grids. Fig. 16a compares results on the grids Coarse and Coarse-S and

25

Coarse-S Medium-S
base grid 100x136 200x272
wake grid 200x100 400x200
shock grid 160x35 320x70
body grid 35x30 70x30

Table 4: Number of grid points in composite grids forbody grid stretched to aspect ratio
1:10 along the wall. Note: the Coarse-S body grid has thickness 0.2 in the radial direction.

−0.5 0 0.5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C
f

x

Aspect ratio 1:1
Aspect ratio 1:10

−0.5 0 0.5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C
f

x

Aspect ratio 1:1
Aspect ratio 1:10

Figure 16: Cf along the upper half of the cylinder for Mach=3 and Re=500. Comparison
high aspect ratio vs unit aspect ratio. a) to the left shows Coarse (dashed) and Coarse-S
(solid) and b) to the right shows Medium (dashed) vs Medium-S (solid).

Fig. 16b compares Medium vs Medium-S. Some difference at the leading edge and at the
separation point is visible on the coarse grids, but on the two medium size grids, the two
curves are almost indistinguishable.

The ability to coarsen the grid in one direction is clearly absent in the embedded
boundary method. We conclude that for attached laminar boundary layers, this feature
makes the body fitted approximation considerably more efficient. However, when reso-
lution is equal in both directions, Fig. 14 shows that the embedded boundary method
gives results of similar quality as with the body fitted method. Equal resolution in all
direction is needed in direct simulation of turbulent separating flows. Furthermore, with
complicated geometries it might not be known a priori at which locations the boundary
layer is attached and therefore it would not be possible take advantage of body fitted
stretched grids.

4.2.4 The temperature on the boundary

The adiabatic wall condition imposes ∂T
∂n

= 0. We evaluate the accuracy of the Neumann
boundary condition by plotting the temperature on the surface. Fig. 17 shows the wall
temperature obtained with the KP method and 18 displays the wall temperature obtained
with the SP method. Similarly to the Cf plots, the KP method appears to be more

26

−1.5 −1.4 −1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5
1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

Second order KPGODU

h=0.0068306
h=0.003406
h=0.0017007

Figure 17: Temperature on the boundary using the KP embedded boundary method.
Mach number 3, Reynolds number 500.

accurate than the SP method.

5 Conclusions

We have shown that solutions to the the compressible Navier-Stokes equations in complex
geometries can be approximated with the embedded boundary method. This is done
maintaining overall second order accuracy using special interpolation procedures to fulfill
boundary conditions on geometries inside the computational domain. Furthermore, we
have defined a local mesh refinement scheme to enable a finer grid near the embedded
objects.

We have compared two different embedded boundary methods and shown that a cen-
tered interpolation stencil works well in the boundary layers, even if the flow field con-
tains discontinuities. Furthermore, we have shown that results obtained with a body
fitted method are comparable with the results obtained by embedded boundary methods
as long as the cell aspect ratios are close to unity. We also found that, for embedded
boundary methods to be accurate, it is very important that the formal order of accuracy
is maintained at the embedded boundary.

Embedded boundary methods become more advantageous with respect to body fitted
methods when the geometry becomes more complicated, espcially in three space dimen-
sions. We have recently extended the embedded boundary method described here to three
space dimensions, and used it to do direct numerical simulation of turbulence (DNS). DNS
is a suitable application for embedded boundaries, because in such computations it is im-
portant to resolve the flow in all directions. Results will be presented in another report.

27

−1.5 −1.4 −1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5
1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

Second order SPGODU

h=0.0068306
h=0.003406
h=0.0017007

Figure 18: Temperature on the boundary using the SP embedded boundary method.
Mach number 3, Reynolds number 500.

The Cartesian grids used for embedded boundary methods are well suited for high or-
der accurate difference methods. Another possible generalization of the method described
here would be to define the boundary interpolation to high order accuracy.

References

[1] P. Colella, D. T. Graves, B. J. Keen, and D. Modiano. A Cartesian grid embedded
boundary method for hyperbolic conservation laws. J. Comput. Phys., 211:347–366,
2006.

[2] L. Ferm and P. Lötstedt. Accurate and stable grid interfaces for finite volume meth-
ods. Appl. Numer. Math., 49:407–224, 2004.

[3] H. Forrer and R. Jeltsch. A higher-order boundary treatment for Cartesian-grid
methods. J. Comput. Phys., 140:259–277, 1998.

[4] D. E. Knuth. The art of Computer Programming, volume 3, Sorting and Searching.
Reading, Massachusetts: Addison-Wesley, second edition edition, 1998.

[5] H.-O. Kreiss and N. A. Peterson. A second order accurate embedded boundary
method for the wave equation with Dirichlet data. SIAM J. Sci. Comput., 27:1141–
1167, 2006.

[6] H.-O. Kreiss, N. A. Peterson, and J. Yström. Difference approximations for the
second order wave equation. SIAM J. Numer. Anal., 40(5):1940–1967, 2002.

28

[7] H.-O. Kreiss, N. A. Peterson, and J. Yström. Difference approximations of the
Neumann problem for the second order wave equation. SIAM J. Numer. Anal.,
42:1292–1323, 2004.

[8] O. K. Olsen. Embedded boundary method for Navier-Stokes equations. Master’s
thesis, Royal Institute of Technology, 2005.

[9] A. Petersson. http://www.andrew.cmu.edu/user/sowen/software/xcog.html. Inter-
net.

[10] J. J. Quirk. An alternative to unstructured grids for computing gas dynamic flows
around arbitrarily complex two-dimensional bodies. Computers Fluids, 23(1):125–
142, 1994.

[11] B. Sjögreen and N. A. Peterson. A Cartesian embedded boundary method for hy-
perbolic conservation laws. Commun. Comput. Phys., 2:1199–1219, 2007.

[12] B. Sjögreen and H. C. Yee. Multiresolution wavelet based adaptive numerical dissi-
pation control for high order methods. J. Sci. Comput., 20(2):211–255, 2004.

[13] P. Skogqvist. High Order Adaptive Difference Methods for Combustible Flows. PhD
thesis, Royal Institute of Technology, Stockholm, Sweden, 2001.

[14] G. van Albada, B. van Leer, and J. W.W. Roberts. A comparative study of compu-
tational methods in cosmic gas dynamics. Astron. Astrophys., 108:76–84, 1982.

[15] H. Yee and B. Sjögreen. Development of low dissipative high order filter schemes for
multiscale Navier-Stokes/MHD systems. J. Comput. Phys., 225(1):910–934, 2007.

29

